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Abstract. The temperature dependence of the Mössbauer doublet linewidth of tetrahedrally
coordinated Fe2+ ions, distorted by the Jahn–Teller effect, was analysed by means of a new
mathematical approach. The idea was that the linewidth depends on a distribution of quadrupole
splittings that are in turn dependent on temperature. The variation of the quadrupole splitting
was supposed to be connected with the temperature dependent population of the ground state Eg

orbitals, split by the local Jahn–Teller effect. The model was applied to three sets of experimental
data. The barrier splitting1 between the two Eg electronic states as well as their widths,δ1, were
obtained.

1. Introduction

In many spinels containing Fe2+ ions in tetrahedral coordination and presenting non-
cooperative Jahn–Teller distortion, unusual behaviours of the Mössbauer doublet linewidths
have been reported [1, 2]. Two cases, one with a sharp and the other with a flat maximum in the
linewidth–temperature curve, are known. Both trends for the doublet linewidth are out of the
normal behaviour especially at higher temperatures when an increasing linewidth is expected
due to the strong activation of the vibrating modes.

This paper presents a mathematical approach in order to explain such an unusual behaviour
of the linewidths of the M̈ossbauer spectra for the peculiar case of a tetrahedral Fe2+ ion subject
to the Jahn–Teller effect. The basic ideas can be also extended to other cases presenting a
temperature dependence of the quadrupole splitting. The proposed model is applied over three
sets of experimental data, previously reported in the literature [1, 2].

2. The basis of the model. Physical considerations

As a general observation, the Mössbauer spectrum of tetrahedrally coordinated Fe2+ spinels
consists of broad doublets with quadrupole splitting strongly dependent on temperature.
The broadness of the M̈ossbauer doublets suggests a rather large distribution of the local
configurations with the same symmetry. Such a possibility seems to be realistic in the natural
spinels due to both crystal imperfections and impurities in the Fe2+ second coordination sphere
(SCS).
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In a previous paper dealing with ferrous ions in natural spinels [2], we explained the
quadrupole splitting behaviour via a local Jahn–Teller effect that reduces the tetrahedral
symmetry at the iron site. Applying the Ingalls theory [3] in the case of an Fe2+ (3d6) ion
in a distorted cubic (Td) symmetry, the quadrupole splitting dependence on temperature was
expressed as [2]:

QS(T ) = C1 + QS0
valF (1, T ) (1)

with

F(1, T ) = 1− e−1/kT

1 + e−1/kT
= tanh

(
1

2kT

)
where:

• C1 represents the quadrupole splitting contribution derived from the lattice distortion and
assumed to be independent of the temperature (T )
• QS0 represents the sixth 3d electron contribution to the quadrupole splitting extrapolated

at 0 K, estimated as 3.1 mm s−1 [2]
• 1 is the splitting energy between the two lowest orbitals dz2 anddx2−y2, induced by the

non-cooperative Jahn–Teller distortion.

The magnitude of the splitting barrier1 could depend on the deviation of the four oxygens
surrounding the central iron from the original positions giving the Td cubic symmetry as well
as on the partial charge transferred from the oxygen anions toward the cations in the SCS.
It was pointed out in [2] that the last mechanism is related to the electronegativity of these
cations. In natural spinels there are usually many different cations in the second coordination
sphere [4, 5] and consequently a wide spread of1 splitting is expected.

The proposed model relates the broadness of the Mössbauer doublets and its evolution
against temperature with a distribution of quadrupole splitting, each one presenting a specific
dependence ofT , in agreement with (1).

3. The mathematical approach

Let us define a symmetrical distributionP(1) centred on the average∆ and characterized
by a width (at half height) of 2δ1 (figure 1). By using relation (1) a similar function can
express the temperature dependent distribution of the quadrupole splitting,P(QS), centred
on the averageQS and with the width 2δQS (as in figure 1, but for QS instead of1). An
infinitesimal variation of QS is expressed as:

dQS(T ) = dQS

d1
d1. (2)

Differentiating (1) with respect to1 one obtains:

dQS

d1
= (2QS0/kT )

exp(−1/kT )
(1 + exp(−1/kT ))2 . (3)

Equation (3) is then introduced into equation (2) and the integration of the thus obtained
equation is carried out, the left side overQS− δQS toQS + δQS, and the right side over
∆− δ1 to ∆ + δ1. The resulting width 2δQS can be written as:

2δQS= 2QS0 sinh(δ1/kT )

cosh(1/kT ) + cosh(δ1/kT )
. (4)

Figure 2 shows the variation of the width 2δQS with temperature for different values of the
splitting energy1 and halfwidthδ1. Depending on the values of1 andδ1, various shapes,
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Figure 1. Symmetrical distributionP(1) centred on1 and characterized by a width at half height
2δ1. The same type of distribution can be considered for QS.

Figure 2. Dependences of the width 2δQS on temperature for different values of the energy
splitting1 and halfwidthδ1.

with a more or less pronounced maximum, are evidenced. A deeper analysis of these curves
can be performed starting from relation (4). It is worth noticing that 2δQS→ 0 for both
T → 0 andT → ∞. The maximum value for 2δQS is provided by the usual procedure
of deriving the expression (4) and then setting the resulting expression to zero. Finally the
following relation is obtained:

δ1

1
= sinh(1/kT ) sinh(δ1/kT )

1 + cosh(1/kT ) cosh(δ1/kT )
. (5)

All the detailed calculations concerning equations (3) to (5) are presented in the appendix.
The graphical solution of equation (5) is obtained by the intersection of the functions
f (T ) = δ1/1 = b (constant) andg(T ) given by the right side of (5). The solutions obtained
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Figure 3. Graphical solutions of equation (5): for the sameb the solutions are strongly dependent
on1 (arrows a and b) and for the same1 the solutions are almost independent ofb (arrows b and
c).

Figure 4. Dependences of the widths 2δQS onT for different1 and the sameb.

for different values of1 andδ1 are shown by arrows in figure 3. There are two observations:
(i) there is a unique solution for equation (5) and (ii) the solution is scarcely dependent on
the mean splitting1, but almost independent of the ratioδ1/1. Consequently the function
2δQS will show a trend with only one maximum. Its position depends strongly on1, but
not onδ1/1. In figures 4 and 5 the functions 2δQS against T are shown for different values
of 1, but for the same ratiob = δ1/1 and respectively for different halfwidthsδ1 but for
the same mean splitting1. The temperatures where the maximum values of the curves are
reached increase almost linearly with1 (figure 4), while the values themselves increase with
b (figure 5).
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Figure 5. Dependences of the widths 2δQS onT for differentb and the same1.

In the case of a distribution of quadrupole splitting, the Mössbauer line shape is expressed
by the convolution of the typical Lorentzian line shape with the distribution probabilityP(QS):

f (v) =
∫ ∞

0
P(QS){1 + [(v − vi)/0exp

0 ]2}−1dQS with vi = h(IS, QS) (6)

wherev is the relative velocity,vi is the resonance velocity,h is a linear function of IS and QS,
while0exp

0 is the minimum experimental M̈ossbauer linewidth. This linewidth corresponds to
a unique value of QS, e.g. for QS= QS∗, as obtained forP(QS) equal to the Dirac distribution,
δ(QS− QS∗). Relation (6) could describe the evolution of the Mössbauer line shape withT
only if the temperature evolution ofP(QS) is known. The analytical solution for0(T ) leads
to important mathematical difficulties. Therefore, we propose as a first approximation for the
total linewidth, taking into account the temperature dependent quadrupole distribution, the
following simplified expression:

0 = 0exp
0 + 2δQS. (7)

The most usual expression forP(QS) is the Gaussian one with QS(T ) given by (1). The
temperature effect can be transformed into aT -dependence of its width 2δQS.

For T → 0, 2δQS→ 0 in accordance with (4) andP(QS) = δ(QS− QS0) for all
possible splittings1. Also forT →∞, P(QS) = δ(QS−C1) due to the same effect. Taking
into account relation (6), in these two limiting situations it seems to be reasonable to consider
the linewidth of the M̈ossbauer spectrum as the minimum experimental value0

exp
0 that can be

obtained with a particular set-up. On the other hand, in the intermediate range of temperature
where the contribution of the width 2δQS may considerably surpass the contribution of0

exp
0 ,

the first term in (7) will introduce only minor errors in the value of0.
In order to have a complete estimation of the errors introduced by the use of relation

(7) compared with a real M̈ossbauer linewidth, we proceeded to the numerical evaluation
of the Mössbauer lineshape as described by (6) in the condition of a normal distribution
P(QS) ∼ exp{(QS− QS)/δQS}2. The simulations were performed for various widthsδQS
(the width at the half maximum), with a discretization of 20 steps over a range of 3 mm s−1 for
QS and consideringQS= 1.5 mm s−1 and0exp

0 = 0.25 mm s−1. The main data concerning
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Table 1. Mössbauer linewidths obtained starting from both the approximation (7) and relationship
(6) and the absolute and relative errors in the Mössbauer linewidths as they are introduced by using
the proposed approximation (7).

2δQS 0 = 0exp
0 + 2δQS 0sim, according to (6) 10 = 0sim− 0 ε = 10/0sim r = 2δQS/0sim

(mm s−1) (mm s−1) (mm s−1) (mm s−1) (%) (%)

0.06 0.31 0.39 0.08 20 15
0.16 0.41 0.42 0.01 2 38
0.55 0.80 0.84 0.04 5 65
1.10 1.35 1.43 0.08 6 77
1.39 1.64 1.82 0.18 10 76

the Mössbauer linewidths obtained starting from both the approximation (7) and relationship
(6) are presented in table 1.

As can be observed in table 1, relation (7) described pretty well the Mössbauer linewidth
in the range 0.4–1.2 mm s−1 where the absolute errors are below 0.1 mm s−1 and the relative
ones below 6%. Larger deviations are expected for very narrow (δQS/QS< 0.05) or very
large (δQS/QS > 0.3) distributions, namely at very low and very high temperatures. The
relative contribution of the QS distribution to the total linewidth increases with the distribution
width and the real linewidth surpasses generally the value obtained by (7).

Three sets of experimental data will be evaluated under the assumption of the simplified
relation (7).

4. Applications

4.1. The VASA spinel

In a previous paper reporting data on natural spinels [2], we analysed two natural compounds
labelled VASA and CR5. For the VASA spinel, Fe2+ ions were located in two different
tetrahedral configurations, characterized by different ions in the SCS as follows: a non-
homogeneous NNN sphere with 11 Al + 1Mg was assigned to the configuration T1 giving
rise to the lower11 splitting value, while a homogeneous one with 12Al surrounding atoms
to the configuration T2 showing a higher splitting12. This behaviour was proved to be
connected with the electronegativity of the cations in the SCS. Values of 35 K for11/k and
240 K for12/k were obtained from the QS(T ) dependences. The experimental linewidths
of the Mössbauer doublets and their fitting curves based on0

exp
0 = 0.26 mm s−1 are shown

in figure 6. Average splitting values of 50 K and 180 K were obtained for11/k and12/k

respectively. A difference of about 25% between the values obtained by the two methods,
the one using the QS(T ) dependence [2] and the one using the0(T ) dependence, has to be
mentioned. The localization of the0(T ) maximum should be more precise than the fit of the
QS(T ) curve, leading probably to more reliable values for the barrier1. The distributions
P(1) are characterized byδ1/k = 15 K for T1 and 35 K for T2, showing a more pronounced
influence of the SCS on the distribution of the local configurations in T1 (δ1/1 = 30%)
compared with T2 (δ1/1 = 20%).

4.2. The CR5 spinel

Two configurations with tetrahedral symmetry were again evidenced for Fe2+ (3d6) [2]. The
first configuration, T1, presenting the lower splitting (11/k = 150 K), was assigned to the
Fe2+ ions with 11(Al+Cr)+1Fe in the SCS whereas the other one (T2), with the higher splitting
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Figure 6. Dependences of the linewidth for the two iron configurations in the VASA spinel onT .
The fitted curves according to equation (7) are presented as continuous and dotted lines respectively.

Figure 7. Dependences of the linewidth for the two iron configurations in the CR5 spinel onT . The
fitted curves according to equation (7) are presented as continuous and dotted lines respectively.

energy (12/k = 410 K), corresponds to an SCS with 10(Al + Cr)+ 2Fe. Figure 7 presents the
experimental linewidths of the M̈ossbauer doublets and their fittings according to relation (7).
The resulting mean values11/k = 180 K for T1 and12/k = 400 K for T2 are in pretty
good agreement with the above-mentioned ones, deduced from the QS(T ) dependences. The
two almost identical splittings for the configuration T2 in VASA and T1 in CR5, respectively,
suggest for the last one no or one Fe ion in the SCS. For both positions the distributionP(1)

is characterized byδ1/k = 30 K.
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Figure 8. The dependence of the M̈ossbauer linewidths onT for the FeAl2O4 spinel. The fitted
curve according to equation (7) is presented as a continuous line.

4.3. FeAl2O4

This is one of the first reported examples of spinels with Fe2+ (3d6) ions in a tetrahedral
distorted configuration analysed by Mössbauer spectroscopy [1]. Even if the quality of the
spectra collected at that time were lower than today, this is not expected to affect the general
trend of the M̈ossbauer parameters with the temperature. A splitting1/k = 300 K derived
from the QS(T ) dependence was reported for that compound, together with a short qualitative
analysis of the linewidth evolution that presents a maximum at intermediate temperatures.
We have fitted their experimental linewidths by using relation (7) with0

exp
0 = 0.37 mm s−1

and the results are presented in figure 8. A mean splitting energy1/k = 330 K, in good
agreement with the above mentioned datum, as well as a halfwidth of the splitting distribution
δ1/k = 60 K were obtained.

4.4. Comments

The main differences among the various locations of Fe2+ in the studied samples derive from
the relative number and the electronegativity of the different surrounding ions.

Comparing T2 (12Al in SCS) and T1 (11Al + 1Mg) in VASA the charge transferred from
oxygens will be lower (electronegativity of Mg 1.2 compared with a 1.5 value for Al) in the T1
configuration. This fact gives rise to a smaller distortion of the initial tetrahedral symmetry and
consequently to a smaller1 split, as found from our calculations. By using the same reasoning
for CR5 case, a higher1 split is expected in the T2 configuration, again in agreement with
experimental data.

Taking into consideration the T1 site in CR5 with 11(Al + Cr) + 1Fe in the SCS and the
T2 site in VASA with only Al in the SCS, the larger1 split observed in T1 of CR5 confirms
the envisaged processes.

The width of the energy splitting distribution,δ1, is clearly related to the distribution of
iron distorted positions and consequently to the disorder in the SCS. The larger distribution
of the energy splitting in CR5 sample, compared with the VASA one, seems to be correlated
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with the atomic composition of the SCS. On the other hand, in the FeAl2O4 and in the T2
sites in VASA, where the SCS is formed only by Al ions, this distribution must be only due to
distributed geometrical distortions. The present results stand for larger distributed geometrical
distortions in the former compound.

5. Conclusions

The linewidths of the M̈ossbauer doublets assigned to the tetrahedral Fe2+ positions locally
distorted by the Jahn–Teller effect were analysed as a function of the temperature. A new model
describing the temperature effect on the Mössbauer linewidths was proposed starting from a
temperature dependent distribution of the quadrupole splitting. The model was developed for
the peculiar dependence QS(T ) ∼ tanh(1/2kT ) where1 is the splitting energy between the
two orbitals dz2 and dx2−y2.

Compared to other models based on the Jahn–Teller effect giving information only on the
mean splitting energy, the above reported mathematical analysis of the0(T ) dependence is the
only one supplying information on the distribution of the splitting energy characterized by mean
splitting energy and distribution width. As a proof of the model validity, the splitting energies
obtained from the0(T ) dependences are in agreement with the previous results obtained from
the QS(T ) ones for all three considered sets of experimental data.
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Appendix

Differentiating expression (1):

QS(T ) = C1 + QS0
valF (1, T )

with

F(1, T ) = 1− e−1/kT

1 + e−1/kT

with respect to1, one obtains:

dQS

d1
= QS0 (1/kT ) e−1/kT (1 + e−1/kT ) + (1/kT ) e−1/kT (1− e−1/kT )

(1 + e−1/kT )2

= QS0

kT
e−1/kT

1 + e−1/kT + 1− e−1/kT

(1 + e−1/kT )2
= 2QS0

kT

e−1/kT

(1 + e−1/kT )2
.

Consequently, the infinitesimal variation of QS will be expressed as:

dQS(T ) = 2QS0

kT

e−1/kT

(1 + e−1/kT )2
d1.

The width of the QS(T ) distribution at half maximum, 2δQS, is obtained by integrating the
above equation over QS− δQS to QS +δQS on the left side and correspondingly over1− δ1
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to1 + δ1 on the right side, with QS and1 mean values.∫ QS+δQS

QS−δQS
dQS=

∫ 1+δ1

1−δ1

2QS0

kT

e−1/kT

(1 + e−1/kT )2
d1

2δQS= 2QS0

kT
(−kT )

∫ 1+δ1

1−δ1

d(1 + e−1/kT )
(1 + e−1/kT )2

2δQS= 2QS0

[
1

(1 + e−1/kT )

]1+δ1

1−δ1
= 2QS0

[
1

1 + e−(1+δ1)/kT
− 1

1 + e−(1−δ1)/kT

]
= 2QS0 1 + e−1/kT eδ1/kT − 1− e−1/kT e−δ1/kT

1 + e−(1+δ1)/kT + e−(1−δ1)/kT + e−21/kT

= 2QS0 e−1/kT
(
eδ1/kT − e−δ1/kT

)
e−1/kT

(
e1/kT + e−δ1/kT + eδ1/kT + e−1/kT

) .
Introducing the hyperbolic functions, sinhx and coshx, (sinhx = (ex − e−x)/2, coshx
= (ex + e−x)/2), the linewidth of the QS(T ) distribution can be finally expressed as:

2δQS= 2QS0 sinh(δ1/kT )

cosh(1/kT ) + cosh(δ1/kT )
.

Differentiating 2δQS with respect toT , one obtains((coshx)′ = sinhx and(sinhx)′

= coshx):

d

dT

(
2QS0 sinh(δ1/kT )

cosh(1/kT ) + cosh(δ1/kT )

)
= 2QS0{(−δ1/kT 2) cosh(δ1/kT )[cosh(1/kT ) + cosh(δ1/kT )]

− sinh(δ1/kT )[−(1/kT 2) sinh(1/kT )− (δ1/kT 2) sinh(δ1/kT )]}
×[cosh(1/kT ) + cosh(δ1/kT )]−2.

Imposing(d/dT )(2δQS) = 0:

− δ1
kT 2

[
− sinh2

(
δ1

kT

)
+ cosh2

(
δ1

kT

)
+ cosh

(
δ1

kT

)
cosh

(
1

kT

)]
+
1

kT 2
sinh

(
δ1

kT

)
sinh

(
1

kT

)
= 0

and considering cosh2 x − sinh2 x = 1:

δ1

[
1 + cosh

δ1

kT
cosh

1

kT

]
= 1

[
sinh

δ1

kT
sinh

1̄

kT

]
or

δ1

1
= sinh(1/kT ) sinh(δ1/kT )

1 + cosh(1/kT ) cosh(δ1/kT )
.
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